What Can We Learn in the Next 10 Years?

André de Gouvêa – Northwestern University

 $\mathbf{W}orkshop\ on\ the\ \mathbf{I}ntermediate\ \mathbf{N}eutrino\ \mathbf{P}rogram-BNL$

February 4-6, 2015

Disclaimer: $CAN \neq WILL$

"Alas, it is always dangerous to prophesy, particularly, as the Danish proverb says, about the future."

Journal of the Royal Statistical Society: Series A (General), Proceedings of the Meeting, [Speaker: Bradford Hill], Page 147, Volume 119, Number 2, 1956, Blackwell Publishing for the Royal Statistical Society.

What We Know We Don't Know: Missing Oscillation Parameters

- What is the ν_e component of ν_3 ? $(\theta_{13} \neq 0!)$
- Is CP-invariance violated in neutrino oscillations? $(\delta \neq 0, \pi?)$
- Is ν_3 mostly ν_{μ} or ν_{τ} ? $(\theta_{23} > \pi/4, \theta_{23} < \pi/4, \text{ or } \theta_{23} = \pi/4?)$
- What is the neutrino mass hierarchy? $(\Delta m_{13}^2 > 0?)$
- ⇒ All of the above can "only" be addressed with new neutrino oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)

February 4, 2015 ______ u Future

What we ultimately want to achieve:

We need to do <u>this</u> in the lepton sector!

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

What we have **really measured** (very roughly):

- Two mass-squared differences, at several percent level many probes;
- $|U_{e2}|^2$ solar data;
- $|U_{\mu 2}|^2 + |U_{\tau 2}|^2 \text{solar data};$
- $|U_{e2}|^2 |U_{e1}|^2 \text{KamLAND};$
- $|U_{\mu 3}|^2(1-|U_{\mu 3}|^2)$ atmospheric data, K2K, MINOS;
- $|U_{e3}|^2(1-|U_{e3}|^2)$ Double Chooz, Daya Bay, RENO;
- $|U_{e3}|^2 |U_{\mu 3}|^2$ (upper bound \rightarrow evidence) MINOS, T2K.

We still have a ways to go!

Long-Baseline Experiments, Present and Future (Not Exhaustive!)

- [NOW] T2K (Japan), NO ν A (USA) $\nu_{\mu} \rightarrow \nu_{e}$ appearance, ν_{μ} disappearance precision measurements of "atmospheric parameters" ($\Delta m_{13}^{2}, \sin^{2}\theta_{23}$). Pursue mass hierarchy via matter effects. Nontrivial tests of paradigm. First step towards CP-invariance violation.
- [2020] JUNO (China) $\bar{\nu}_e$ disappearance precision measurements of "solar parameters" ($\Delta m_{12}^2, \sin^2 \theta_{12}$). Pursue the mass hierarchy via precision oscillations..
- [2025] PINGU (South Pole) and INO (India)—atmospheric neutrinos—pursue mass hierarchy via matter effects.
- [2025] HyperK (Japan), LBNF (USA) Second (real opportunity for discovery!) step towards CP-invariance violation. More nontrivial tests of the paradigm. Ultimate "super-beam" experiments.
- [>2030?] Neutrino Factories (?) Ultimate neutrino oscillation experiment. Test paradigm, precision measurements, solidify CP-violation discovery or improve sensitivity significantly.

February 4, 2015 ______ ν Future

What Can We Learn ...? – Long-Baseline Oscillations

[see Mark Thomson's talk, next]

- Mass Hierarchy. Not guaranteed, but there is a fair chance.
- More precise measurement of θ_{23} , including potential octant information, $\sin^2 \theta_{23} > 0.5$ or $\sin^2 \theta_{23} < 0.5$.
- A Hint of δ .
- Multiple measurements of θ_{13} , including $|U_{e3}|^2$, $|U_{e3}U_{\mu3}|$.
- Significant matter effects in a beam experiment.
- Precision measurement of Δm_{12}^2 and $\sin^2 \theta_{12}$ from JUNO. Note that the current best measurement of $\sin^2 \theta_{12}$ is from solar data.

February 4, 2015 _____

The Short Baseline Anomalies

Different data sets, sensitive to L/E values small enough that the known oscillation frequencies do not have "time" to operate, point to unexpected neutrino behavior. These include

- $\nu_{\mu} \rightarrow \nu_{e}$ appearance LSND, MiniBooNE;
- $\nu_e \rightarrow \nu_{\text{other}}$ disappearance radioactive sources;
- $\bar{\nu}_e \to \bar{\nu}_{\text{other}}$ disappearance reactor experiments.

None are entirely convincing, either individually or combined. However, there may be something very very interesting going on here...

What is Going on Here?

- Are these "anomalies" related?
- Is this neutrino oscillations, other new physics, or something else?
- Are these related to the origin of neutrino masses and lepton mixing?
- How do clear this up **definitively**?

Need new clever experiments, of the short-baseline type!

Observable wish list:

- ν_{μ} disappearance (and antineutrino);
- ν_e disappearance (and antineutrino);
- $\nu_{\mu} \leftrightarrow \nu_{e}$ appearance;
- $\nu_{\mu,e} \rightarrow \nu_{\tau}$ appearance.

What Can We Learn...? – Short-Baseline Anomalies

[see Mark Thomson's talk, next]

- There are new neutrino states! [Maybe]
- There is something else going on that is new and exciting! [Maybe]
- The neutrino-oscillation interpretation to the Short-Baseline Anomalies is ruled out. [Maybe]
- We will learn a lot about neutrino detectors, neutrino beams, neutrino interactions, and how to measure small effects in the neutrino sector. Very useful!

What We Know We Don't Know: How Light is the Lightest Neutrino?

So far, we've only been able to measure neutrino mass-squared differences.

The lightest neutrino mass is only poorly constrained: $m_{\text{lightest}}^2 < 1 \text{ eV}^2$

qualitatively different scenarios allowed:

- $m_{\text{lightest}}^2 \equiv 0;$
- $m_{\text{lightest}}^2 \ll \Delta m_{12,13}^2$;
- $m_{\text{lightest}}^2 \gg \Delta m_{12,13}^2$.

Need information outside of neutrino oscillations:

 \rightarrow cosmology, β -decay, $0\nu\beta\beta$

Big Bang Neutrinos are Warm Dark Matter

Fig. 10.— This figure illustrates the robustness of the neutrino mass detection to other parameter extensions. The marginalized one-dimensional posteriors for $\sum m_{\nu}$ are shown for two-parameter extensions to ΛCDM for the combined CMB+BAO+ H_0 +SPT_{CL} data sets (for w, SNe are used instead of H_0). Allowing significant curvature or running can significantly reduce the preference for nonzero neutrino masses (to 1.7 and 2.4 σ respectively). Other extensions increase the preference for positive neutrino masses.

[Z. Hou et al. arXiv:1212.6267]

• Constrained by the Large Scale
Structure of the Universe.

Constraints depend on

- Data set analysed;
- "Bias" on other parameters;
- . . .

Bounds can be evaded with non-standard cosmology. Will we learn about neutrinos from cosmology or about cosmology from neutrinos?

What Can We Learn...? – Cosmology

Figure 7. Current constraints and forecast sensitivity of cosmology to the sum of neutrino masses. In the case of an "inverted hierarchy," with an example case marked as a diamond in the upper curve, future combined cosmological constraints would have a very high-significance detection, with 1- σ error shown as a blue band. In the case of a normal neutrino mass hierarchy with an example case marked as diamond on the lower curve, future cosmology would still detect the lowest $\sum m_{\nu}$ at greater than 3- σ .

[K. Abazajian et al. arXiv:1309.5386]

André de Gouvêa	Northweste
-----------------	------------

What Can We Learn...? $-\beta$ -Decay

- Katrin will probe m_{ν_e} values larger than 0.2 eV. Life will be very exciting if they see a signal (see current Cosmology bounds)
- We will lean if it is possible to improve on Katrin Project 8, Ptolemy.

February 4, 2015 ______ ν Future

What We Know We Don't Know: Are Neutrinos Majorana Fermions?

How many degrees of freedom are required to describe massive neutrinos?

A massive charged fermion (s=1/2) is described by 4 degrees of freedom:

$$(e_L^- \leftarrow \text{CPT} \rightarrow e_R^+)$$

$$\uparrow \text{"Lorentz"}$$
 $(e_R^- \leftarrow \text{CPT} \rightarrow e_L^+)$

A massive neutral fermion (s=1/2) is described by 4 or 2 degrees of freedom:

$$(\nu_L \leftarrow \mathrm{CPT} \to \bar{\nu}_R)$$

$$\uparrow \text{"Lorentz"} \quad \text{'DIRAC'}$$
 $(\nu_R \leftarrow \mathrm{CPT} \to \bar{\nu}_L)$

'MAJORANA'
$$(\nu_L \leftarrow \text{CPT} \rightarrow \bar{\nu}_R)$$

$$\uparrow \text{"Lorentz"}$$

$$(\bar{\nu}_R \leftarrow \text{CPT} \rightarrow \nu_L)$$

February 4, 2015 ____

Search for the Violation of Lepton Number (or B-L)

Best Bet: search for

Neutrinoless Double-Beta

Decay:

$$Z \rightarrow (Z+2)e^-e^-$$

Helicity Suppressed Amplitude $\propto \frac{m_{ee}}{E}$

Observable: $m_{ee} \equiv \sum_{i} U_{ei}^{2} m_{i}$

 \Leftarrow clear benchmarks for next-gen. expts.

What We Are Trying To Understand:

← NEUTRINOS HAVE TINY MASSES

↓ LEPTON MIXING IS "WEIRD" ↓

$$V_{MNS} \sim \begin{pmatrix} 0.8 \ 0.5 \ 0.2 \\ 0.4 \ 0.6 \ 0.7 \\ 0.4 \ 0.6 \ 0.7 \end{pmatrix} \qquad V_{CKM} \sim \begin{pmatrix} 1 \ 0.2 \ 0.001 \\ 0.2 \ 1 \ 0.01 \\ 0.001 \ 0.01 \ 1 \end{pmatrix}$$

$$V_{CKM} \sim \left(egin{array}{ccc} 1 & 0.2 & _{0.001} \end{array}
ight) \ 0.2 & 1 & _{0.001} \ 0.001 & 0.01 & 1 \end{array}
ight)$$

What Does It Mean?

"Left-Over" Predictions: δ , mass-hierarchy, $\cos 2\theta_{23}$

February 4, 2015 ______ ν Future

Order: $\sin^2 \theta_{13} = C \cos^2 2\theta_{23}, C \in [0.8, 1.2]$

[AdG, Murayama, 1204.1249]

What is the New Standard Model? $[\nu SM]$

The short answer is – WE DON'T KNOW. Not enough available info!

Equivalently, there are several completely different ways of addressing neutrino masses. The key issue is to understand what else the νSM candidates can do. [are they falsifiable?, are they "simple"?, do they address other outstanding problems in physics?, etc]

We need more experimental input.

Neutrino Masses, EWSB, and a New Mass Scale of Nature

The LHC has revealed that the minimum SM prescription for electroweak symmetry breaking — the one Higgs double model — is at least approximately correct. What does that have to do with neutrinos?

The tiny neutrino masses point to three different possibilities.

- 1. Neutrinos talk to the Higgs boson very, very **weakly** (Dirac neutrinos);
- 2. Neutrinos talk to a **different Higgs** boson there is a new source of electroweak symmetry breaking! (Majorana neutrinos);
- 3. Neutrino masses are small because there is **another source of mass** out there a new energy scale indirectly responsible for the tiny neutrino masses, a la the seesaw mechanism (Majorana neutrinos).

Searches for $0\nu\beta\beta$ help tell (1) from (2) and (3), the LHC, charged-lepton flavor violation, et al may provide more information.

Constraining the Seesaw Lagrangian

[AdG, Huang, Jenkins, arXiv:0906.1611]

Making Predictions, for an inverted mass hierarchy, $m_4 = 1 \text{ eV} (\ll m_5)$

[AdG, Huang arXiv:1110.6122]

- ν_e disappearance with an associated effective mixing angle $\sin^2 2\vartheta_{ee} > 0.02$. An interesting new proposal to closely expose the Daya Bay detectors to a strong β -emitting source would be sensitive to $\sin^2 2\vartheta_{ee} > 0.04$;
- ν_{μ} disappearance with an associated effective mixing angle $\sin^2 2\theta_{\mu\mu} > 0.07$, very close to the most recent MINOS lower bound;
- $\nu_{\mu} \leftrightarrow \nu_{e}$ transitions with an associated effective mixing angle $\sin^{2} \vartheta_{e\mu} > 0.0004$;
- $\nu_{\mu} \leftrightarrow \nu_{\tau}$ transitions with an associated effective mixing angle $\sin^2 \vartheta_{\mu\tau} > 0.001$. A $\nu_{\mu} \to \nu_{\tau}$ appearance search sensitive to probabilities larger than 0.1% for a mass-squared difference of 1 eV² would definitively rule out $m_4 = 1$ eV if the neutrino mass hierarchy is inverted.

February 4, 2015 _____

Piecing the Neutrino Mass Puzzle

Understanding the origin of neutrino masses and exploring the new physics in the lepton sector will require unique **theoretical** and **experimental** efforts, including ...

- understanding the fate of lepton-number. Neutrinoless double beta decay!
- a comprehensive neutrino oscillation program, towards "precision" oscillation physics.
- other probes of neutrino properties, including neutrino scattering.
- precision studies of charged-lepton properties (g-2, edm), and searches for rare processes $(\mu \to e\text{-conversion})$ the best bet at the moment).
- collider experiments. The LHC and beyond may end up revealing the new physics behind small neutrino masses.
- cosmic surveys. Neutrino properties affect, in a significant way, the history of the universe. Will we learn about neutrinos from cosmology, or about cosmology from neutrinos?
- searches for baryon-number violating processes.

Backup Slides

Where We Are (?) [This is Not a Proper Comparison!]

February 4, 2015.

 L/E_{ν} (meters/MeV)

[Courtesy of G. Mills]

 ν Future

Bugey 40 m

Bugey 40 m

Experiments measure the **shape** of the end-point of the spectrum, not the value of the end point. This is done by counting events as a function of a low-energy cut-off.

note: LOTS of Statistics Needed!

Figure 2: The electron energy spectrum of tritium β decay: (a) complete and (b) narrow region around endpoint E_0 . The β spectrum is shown for neutrino masses of 0 and 1 eV.

February 4, 2015 -

André de Gouvêa ______ Northwestern

NEXT GENERATION: The Karlsruhe Tritium Neutrino (KATRIN) Experiment:

(not your grandmother's table top experiment!)

February 4, 2015 ______ ν Future

André de Gouvêa _	Northwestern

Why Don't We Know the Answer?

If neutrino masses were indeed zero, this is a nonquestion: there is no distinction between a massless Dirac and Majorana fermion.

Processes that are proportional to the Majorana nature of the neutrino vanish in the limit $m_{\nu} \to 0$. Since neutrinos masses are very small, the probability for these to happen is very, very small: $A \propto m_{\nu}/E$.

The "smoking gun" signature is the observation of LEPTON NUMBER violation. This is easy to understand: Majorana neutrinos are their own antiparticles and, therefore, cannot carry **any** quantum numbers — including lepton number.

Neutrino Mixing Anarchy: Alive and Kicking!

[AdG, Murayama, 1204.1249]